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COURSE OVERVIEW
Application of machine learning to materials science, chemistry, physics

• What types of problems can ML uniquely address?

• What are the challenges and opportunities?

• Principles of good applied ML for scientific problems

• Needed theoretical developments for scientific ML 

An objective of this class is to bring together your combined expertise in CSE and 
other engineering fields to explore creative solutions to interdisciplinary problems.



Part I: Machine Learning

• Scientific data in the ML setting
• Evaluating model performance
• Feature engineering
• Deep-learning based strategies
• Interpretable ML

Part II: Scientific Applications

• Scientific databases
• Property prediction for molecules 

and crystals
• Enabling faster molecular dynamics 

simulation
• Scientific imaging
• Interests of the class.

?

?



Check class website for reading assignments:

https://qianyanglab.github.io/teaching/cse5095_mlmaterials.html

Course assessments will be submitted via HuskyCT.

Assessments

• Project (50%) - teams of 2-4 students; final paper and flash talk; project 
suggestions and milestones will be distributed next week

• Quizzes (20%) - in weeks 4-8, there will be a short weekly quiz on the 
previous week’s lecture (sample ungraded quiz will be given in week 3)

• Paper Review (30%) - in weeks 9-13, we will review papers as a class; each 
group of 2-3 students will be responsible for leading the discussion on one 
paper



Logistics

Lecture              T/Th, 9:30am-10:45am, KNS 201

Office Hours      Th, 11:00am-12noon, ITE 259

                              and by appointment

Start thinking about final project ideas and teams.



What kind of scientific problems is Machine Learning 
(not) good for?



THEMES

• Speeding up existing 
computational methods 
without decreasing accuracy

• ML of expensive 
components

• Model reduction

in diamond and the transition from rhombohedral graphite
to diamond. The agreement with DFT is excellent, dem-
onstrating that we can construct a truly reactive model that
describes the sp2-sp3 transition correctly, in contrast to
currently used interatomic potentials.

Even for the small systems considered above, the GAP
model is orders of magnitude faster than standard plane
wave DFT codes, but significantly more expensive than
simple analytical potentials. The computational cost is
roughly comparable to the cost of numerical bond order
potential models [17]. The current implementation of the
GAP model takes 0:01 s=atom=time step on a single CPU
core. For comparison, a time step of the 216-atom unit cell
of Fig. 3 takes 191 s=atom using CASTEP, about 20 000
times longer, while the same for iron would take more
than 106 times longer.

In summary, we have outlined a framework for auto-
matically generating finite range interatomic potential
models from quantum-mechanically calculated atomic
forces and energies. The models were tested on bulk semi-
conductors and iron and were found to have remarkable
accuracy in matching the ab initio potential energy surface
at a fraction of the cost, thus demonstrating the fundamen-
tal capabilities of the method. Preliminary data for GaN,
presented in [8], shows that the extension to multicompo-
nent and charged systems is straightforward by augment-
ing the local energy with a simple Coulomb term using
fixed charges. Our long-term goal is to expand the range of

interpolated configurations and thus create ‘‘general’’ in-
teratomic potentials whose accuracy approaches that of
quantum mechanics.
The authors thank Sebastian Ahnert, Noam Bernstein,

Zoubin Ghahramani, Edward Snelson, and Carl
Rasmussen for discussions. A. P. B. is supported by the
EPSRC. Part of the computational work was carried out
on the Darwin Supercomputer of the University of
Cambridge High Performance Computing Service.
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FIG. 3. Linear thermal expansion coefficient of diamond in the
GAP model (dashed line) and DFT (dash-dotted line) using the
quasiharmonic approximation [25], and derived from MD
(216 atoms, 40 ps) with GAP (solid) and the Brenner potential
(dotted). Experimental results are shown with squares [26].
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FIG. 4. The energetics of the linear transition path for a
migrating vacancy (top) and for the rhombohedral graphite to
diamond transformation (bottom).
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ML energy potentials for faster, more accurate 
atomistic simulation 

Bartok, A. P., Payne, M. C., Kondor, R., and Csanyi, G., Gaussian 
approximation potentials: the accuracy of quantum mechanics, without the 
electrons. Physical Review Letters, doi:10.1103/PhysRevLett.104.136403 
(2010)



THEMES

• Automation: doing what 
humans could do, but 
faster and better
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by choosing a threshold probability t and defining the prediction ŷ for 
each image as ŷ = P ≥ t. Varying t in the interval 0–1 generates a curve 
of sensitivities and specificities that the CNN can achieve.

We compared the direct performance of the CNN and at least 
21 board-certified dermatologists on epidermal and melanocytic 

lesion classification (Fig. 3a). For each image the dermatologists 
were asked whether to biopsy/treat the lesion or reassure the patient. 
Each red point on the plots represents the sensitivity and specificity 
of a  single  dermatologist. The CNN outperforms any dermatologist 
whose  sensitivity and specificity point falls below the blue curve of 
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Figure 3 | Skin cancer classification performance of the CNN and 
dermatologists. a, The deep learning CNN outperforms the average of 
the dermatologists at skin cancer classification using photographic and 
dermoscopic images. Our CNN is tested against at least 21 dermatologists 
at keratinocyte carcinoma and melanoma recognition. For each test, 
previously unseen, biopsy-proven images of lesions are displayed, and 
dermatologists are asked if they would: biopsy/treat the lesion or reassure 
the patient. Sensitivity, the true positive rate, and specificity, the true 
negative rate, measure performance. A dermatologist outputs a single 
prediction per image and is thus represented by a single red point. The 
green points are the average of the dermatologists for each task, with 
error bars denoting one standard deviation (calculated from n =  25, 22 
and 21 tested dermatologists for keratinocyte carcinoma, melanoma 
and melanoma under dermoscopy, respectively). The CNN outputs a 
malignancy probability P per image. We fix a threshold probability t 

such that the prediction ŷ for any image is ŷ = P ≥ t, and the blue curve is 
drawn by sweeping t in the interval 0–1. The AUC is the CNN’s measure 
of performance, with a maximum value of 1. The CNN achieves superior 
performance to a dermatologist if the sensitivity–specificity point of 
the dermatologist lies below the blue curve, which most do. Epidermal 
test: 65 keratinocyte carcinomas and 70 benign seborrheic keratoses. 
Melanocytic test: 33 malignant melanomas and 97 benign nevi. A second 
melanocytic test using dermoscopic images is displayed for comparison: 
71 malignant and 40 benign. The slight performance decrease reflects 
differences in the difficulty of the images tested rather than the diagnostic 
accuracies of visual versus dermoscopic examination. b, The deep learning 
CNN exhibits reliable cancer classification when tested on a larger dataset.  
We tested the CNN on more images to demonstrate robust and reliable 
cancer classification. The CNN’s curves are smoother owing to the larger 
test set.
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Figure 4 | t-SNE visualization of the last hidden layer representations 
in the CNN for four disease classes. Here we show the CNN’s internal 
representation of four important disease classes by applying t-SNE,  
a method for visualizing high-dimensional data, to the last hidden layer 
representation in the CNN of the biopsy-proven photographic test sets 

(932 images). Coloured point clouds represent the different disease 
categories, showing how the algorithm clusters the diseases. Insets show 
images corresponding to various points. Images reprinted with permission 
from the Edinburgh Dermofit Library (https://licensing.eri.ed.ac.uk/i/
software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Computer vision for disease detection 

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, 
S., Dermatologist-level classification of skin cancer with deep neural 
networks. Nature, doi:10.1038/nature21056 (2017)



THEMES

• Structure-property 
prediction

students would naturally predict superionic conduction in the
absence of eq 1, and so they were not given access to any of the
pretabulated features employed in eq 1, nor were they
encouraged to make predictions quickly. After making
predictions, we calculated their average precision and recall
on the data set; the average precision was 0.25 and the average
recall was 0.222, giving an overall average F1 score of 0.235.
The baseline F1 score for random guessing is 0.143. The
students took approximately one minute to make each
individual prediction. For comparison, the ML model made
each prediction in approximately one millisecond.
In Figure 4 we compare the performance in speed and F1

score of the Ph.D. students and the ML model. The ML model

exhibits more than double the F1 score of the students and is
more than 3 orders of magnitude faster. As a reference, we
provide the performance of DFT-MD, which we assume has an
F1 score of 1.0 and requires approximately 2 weeks to make a
reliable prediction.
While DFT-MD is taken here to be ground truth, the logistic

regression model utilized in this work is trained on
experimental measurements, where grain boundaries, contam-
inants, and other uncharacterized factors may have altered the
result. This may mean the model is best suited to guide
experimental searches, as the model has a built-in bias toward
expected results under experimental conditions. In contrast,
our DFT-MD simulates conductivity in single crystal bulk
systems with small Li vacancy concentrations. Although DFT-
MD is well-suited to make predictions under these conditions,
its predictions have potential to deviate from the ground truth
for the ML model; for example, the conflicting DFT-MD and
experimental reports for RT Li ion conductivity in Li6Ho-
(BO3)3 between this work and ref.40 This work predicts RT
ion conductivity of approximately 5.1 mS/cm, while ref 40
reports RT ion conductivity orders of magnitude lower (see
Section III, Subsection iii). It is possible that the model may
recognize that experimental efforts on Li6Ho(BO3)3 are likely
to yield a poor conductor even though the single crystal
conductivity is fast. We look forward to future experimental
reports of the ionic conductivities of some of the materials
presented here, to both advance the state of the art in ion
conductors and to further quantify the performance of the data
driven approach.

IV. CONCLUSIONS
Guided by machine learning methods, we discover many new
solid materials with predicted superionic Li ion conduction
(≥10−4 S/cm) at room temperature: Li5B7S13, Li2B2S5,
Li3ErCl6, LiSO3F, Li3InCl6, Li2HIO, LiMgB3(H9N)2, and
CsLi2BS3. Two additional materials show marginal RT
conduction: Sr2LiCBr3N2 and LiErSe2. One of these materials,
Li5B7S13, has a DFT-MD predicted RT Li conductivity (74
mS/cm) many times larger than the fastest known Li ion
conductors. A search over randomly chosen materials identifies
two additional materials with promising predicted RT ionic
conductivities: Li6Ho(BO3)3, and LiSbO3. In addition to high
ionic conductivities, all these materials have high band gaps,
high thermodynamic stability, and no transition metals, making
them promising candidates for solid-state electrolytes in
SSLIBs. These materials represent many exciting new
candidates for solid electrolytes in SSLIBs, and we encourage

Figure 4. Comparison of human and machine. Here we plot the
predictive accuracy (F1 score) of the ML model and the predictive
accuracy of a group of six Ph.D. students working in materials science
and electrochemistry. We chose 22 materials at random from a list of
317 highly stable Li containing compounds in the Materials Project
database and queried both Ph.D. students and the ML model to
predict which materials are superionic Li conductors at room
temperature. Validation of superionic conduction is performed with
density functional theory molecular dynamics simulation. The Ph.D.
students average an F1 score of 0.24 for superionic prediction while
the model produces an F1 score of 0.5. For reference, we provide the
baseline F1 score expected for random guessing (0.14) as a dashed
vertical line. Additionally, the students average a rate of approximately
one minute per prediction while the trained ML model makes over
100 predictions per second, a thousand-fold increase in speed. The
density functional theory simulation used to validate superionic
conduction is a physics-based model that is taken here to represent
the ground truth (F1 score of 1.0) but is very slow, with a prediction
rate on the scale of weeks. Taken together, these data points highlight
the experimental approach that ML-based prediction tools are well-
suited to address: making fast predictions more accurately than trial-
and-error guessing.

Table 3. Summary of Model Performancea

model precision recall
F1
score fast Li ion conducting materials identified (in this work)

machine learning (logistic regression on 40
examples)

1.0 0.33 0.5 Li5B7S13, Li2B2S5, Li3ErCl6, Li2HIO, LiSO3F, Li3InCl6, CsLi2BS3, LiMgB3(H9N)2,
Sr2LiCBr3N2 (marginal), LiErSe2 (marginal)

random selection 0.14 0.14 0.14 Li6Ho(BO3)3, LiSbO3, LiSO3F
Ph.D. student screening 0.25 0.22 0.24 −

aHere we provide the performance metrics (precision, recall, F1 score) and list of discovered fast Li ion conducting materials for the three models
explored in this work. The results of the Ph.D. student screening represent the average performance of six students on the same test set of randomly
chosen materials as used to compute the “random selection” statistics. The machine learning-based approach to predicting ion conductivity from a
small data set of 40 materials significantly outperforms both random chance and the average polled Ph.D. student. This highlights the promise of
applying machine learning-based approaches to materials screening before performing computationally expensive simulation techniques like DFT-
MD or time consuming experimental tests.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.8b03272
Chem. Mater. 2019, 31, 342−352
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Predictions of superionic Li conductors at 
room temperature. 

Sendek, A.D., Cubuk, E.D., Antoniuk, E.R., Cheon, G., Cui, Y., and Reed, E. 
J., Machine Learning-Assisted Discovery of Solid Li-Ion Conducting 
Materials. Chemistry of Materials, doi:10.1021/acs.chemmater.8b03272 
(2018)



WHAT MAKES SCIENTIFIC 
MACHINE LEARNING HARD?

• Distribution of Data

• Feature Engineering

• Model Performance Requirements

• Interpretability

• Others?



ADVANTAGES IN SCIENTIFIC 
MACHINE LEARNING

• Problems are often highly structured

• We can often generate new data in a principled way 
(experiments, computation)

• Existing physical models provide initial guesses and 
meaningful constraints



Please email me with a quick response to the following before lecture 
Thursday (subject line: cse5095spring19survey):

1. What is your background in linear algebra, probability & statistics, and 
machine learning?

2. How strong is your programming background? (scale 1-3, strongest = 3)
3. What scientific applications of ML are you interested in/would you like to 

see explored in this class?

Next Class: a whirlwind tour through ML algorithms.



INTRODUCTIONS


